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The behavior of a superconductor in a static magnetic field H(r) is considered in the limit that the field 
and the gap function A (r) vary slowly in space compared with the correlation distance of a superconducting 
electron pair (local limit). The superconductor is described by a pair of coupled differential equations for 
A(r) and the induced vector potential A(r). The equations are analogous in form to those proposed phe-
nomenologically by Ginzburg and Landau (GL), but contain additional nonlinear terms. When A is inde­
pendent of position and H is weak, the equations reduce to those given by BCS for the dependence of A 
and the penetration depth on the temperature T. When A<<cr, the equations reduce to those derived by 
Gor'kov, in confirmation of the GL theory. The region of validity of the derivation is examined, showing 
that while a local (London) electrodynamics can be correct for some materials over a wide range of T and 
H, A (r) is slowly varying for T<^TC only if A is near to its equilibrium, zero-field value. 

I. INTRODUCTION 

IN 1950, Ginzburg and Landau1 presented a phe-
nomenological theory of the behavior of a super­

conductor in a magnetic field, based on Landau's general 
theory of second-order phase transitions. The central 
hypothesis is the existence of an order parameter, \p, in 
the superconducting phase, which goes to zero at the 
transition point. This order parameter is taken to be a 
function of space, and GL wrote down a plausible free-
energy functional which is to be stationary with respect 
to variations of \p(x) and the vector potential A(r). The 
corresponding Euler-Lagrange equations become a 
Schrodinger-like equation satisfied by ^ in the presence 
of A, and Maxwell's equation for A with the current 
source expressed in terms of ^. These coupled equations 
have been applied with great success to a number of 
experimental situations, such as the magnetization 
characteristics and field dependence of the energy gap 
in thin superconducting films.2,3 

After the development of the4 BCS microscopic theory 
of superconductivity, Gor'kov5 recast the theory into 
the language of thermodynamic Green's functions, and 
showed6 that in a well-defined limit the GL equations 
were an exact consequence. Corresponding to the order 
parameter of GL (except for normalization) was the 
"pair wave function" or "gap function" A(r), and the 
effective charge e* of GL was determined to be e*=2e, 
reflecting the existence of bound electron pairs charac­
teristic of the microscopic theory. 

Gor'kov's derivation, however, made critical use of 
the assumption that the temperature, T, was close to 
to the transition temperature, Tc. This single assump-

1 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. 
Fiz. 20, 1064 (1950); to be referred to as GL. 

2V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 34, 113 (1958) 
[translation: Soviet Phys.—JETP 7, 78 (1958)]. 

3 D . H. Douglass, Phys. Rev. 124, 735 (1961); IBM J. Res. 
Develop. 6, 44 (1962). 

4 J. Bardeen, L. Cooper, and J. R. Schriefler. Phys. Rev. 108, 
1175 (1957). 

5 L . P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958) 
[translation: Soviet Phys.—JETP 7, 505 (1958)]. 

6 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959) 
[translation: Soviet Phys.—JETP 9, 1364 (1959)]. 

tion justified several distinct approximations: (1) That 
the energy-gap function A(r,T) was small compared to 
T, and was thus a valid expansion parameter; (2) that 
A(r,r) varied only slowly over a coherence distance 
£(r), characterizing the spatial extent of the electron 
pair correlations; (3) that the penetration depth 8(T) 
was much larger than £(T), so that the magnetic field 
was also slowly varying over a coherence distance; (4) 
that the bulk critical field HC{T) was much smaller than 
#c(0), and hence, that all magnetic fields of interest 
were weak in strength; (5) and as a corollary of (4), that 
the cyclotron frequency was very small compared with 
T (both in energy units), thus allowing a semiclassical 
approximation for the one-electron Green's function in 
the normal state in the presence of the field. 

Several authors7,8 have speculated recently that the 
GL equations should be valid over a wider range of 
temperatures than that considered by Gor'kov. In 
particular, only assumptions (2) and (3) that the super­
conductor is described by parameters with slow spatial 
variation should really be necessary. That this is at 
least a minimum requirement may be understood by 
recalling that Landau's theory postulates the existence 
of a local order parameter; such a concept can be a 
sensible one only when, e.g., the superconductor obeys 
a local electrodynamics (London limit), and clearly not 
when the electrodynamics is nonlocal (Pippard limit). 
Assumption (3) holds for some pure superconductors 
over a fairly wide range of temperatures, and is well-
obeyed for all T by superconducting alloys of negative 
surface energy.9 On the other hand, the GL theory 
makes no explicit demands that the order parameter be 
small, and there is nothing in the underlying physics to 
suggest that it need be so; the theory is meant to be an 
adequate description throughout the superconducting 
phase. It would appear that Gor'kov's assumption (1) 
may be no more than a convenient mathematical 
simplification. 

7 R. H. Parmenter, Phys. Rev. 118, 1173 (1960). 
8 M. Tinkham, IBM J. Res. Develop. 6, 49 (1962). 
9 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 

[translation: Soviet Phys.—JETP 5, 1174 (1957)], 
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In this paper, we re-examine Gor'kov's derivation, 
relaxing approximation (1) but retaining the others. We 
derive coupled equations determining A(r) and A(r) 
analogous to those of GL and Gor'kov, but which con­
tain additional nonlinear terms. These terms are associ­
ated with the fact that A(r) is not normalized in the 
same way as the GL order parameter; this may also 
be seen by reconstructing the free-energy functional 
whose variation leads back to the dynamical equations. 
In the limit in which A does not vary in space, these 
equations reduce to those originally obtained by BCS 
for the energy gap and for the London penetration 
depth as functions of temperature. As T—>TC and 
A —> 0, we recover Gor'kov's derivation. For low tem­
peratures, on the other hand, an examination of the 
equations reveals limitations in their validity. First of 
all, the semiclassical approximation (5) in fields no 
greater than the critical field is accurate down to re­
duced temperatures T/Tc^ 10 - 2 or perhaps even less, 
but does fail at T=0. With this one mild restriction, the 
expression for the current can be correct for almost all T 
in some materials. The equation for A(r), however, 
derived by assuming this quantity to be slowly varying, 
shows the assumption (2) to be justified here only when 
A(r) is close to its zero-field value. Thus, while equations 
of the GL form can be suitably extended to much lower 
temperatures than indicated by Gor'kov's derivation, 
the equation for A (being highly nonlinear) is no longer 
an approximate description for all values of its solution. 
Nevertheless, if for low temperatures the transition at 
the critical field is of first order, so that, in fact, A is not 
substantially reduced by the field, than our A equation 
may be expected to hold for all H<HC and almost all 
T; a separate explicit calculation for each configuration 
would be needed, however, to determine the order of 
the transition. 

II. DERIVATION 

Our derivation begins by adopting Gor'kov's equa­
tions for the thermodynamic Green's functions G and 
F1" appropriate to a superconductor in a magnetic field, 
as stated in Eq. (2) of Ref. 6: 

r 1 / d ie \ 2 1 
ico+—( A(r) ) + M G„(r,r') 

L 2m\dr c / J 

= 5 3 ( r - rO-A( r )F w t ( r ; r ' ) , 

\-ia>+—(—+-A(r)) + M ~k+( r , r ' ) 
L 2m\dr c J A 

(1) 

= A*(r)G„(r,r'). 

Reviewing the notation, w is a discrete index, 
= (2n+l)irT with n an integer; fx is the chemical po­
tential; and A(r) is the gap function, defined by 

with V being the interaction constant. In addition, 
following Gor'kov, we introduce the single-particle 
Green's function <5w(r,r') for the electrons in the normal 
state, satisfying 

r 1 / d ie \ 2 1 
ia+—( A(r) ) +n 5„(r,r ') = * 8 ( r - r ' ) , (3a) 

L 2m\dr c / J 

and the adjoint equation 

-io)-\— 
1 

2m 
( d ie \' 

—+-A(r') ) 
dr' c / 

+M 5w(r,r ') = 5 8 ( r - r ' ) . 

(3b) 

I t is worth noting that the Hartree-Fock contribution 
to the various Green's functions has been neglected. 

Since Gor'kov assumes A to be small, his derivation 
proceeds by iterating Eqs. (1) to a low order. However, 
by rearranging Eqs. (1) and (3), separate exact integral 
equations for G and F1" may be written, in terms of A, 
A* and G only: 

d*sK„(Tfi)G„(8,r,) = 8\r-r'), 

d*s K^(s,r)Fj(s,tf) = A*(r)&(r,r ') , (4) 

where the kernel K is defined as 

r 1 /d ie \ 2 

i ^ r , s ) ^ 3 ( r - s ) io>+—{ A(s)) + M 
L 2m\ds c / 

+A(r)fiL„(8,r)A*(8). (5) 

We note the close mathematical similarity of the 
problem at hand to that studied by BarafI and Boro-
witz,10 and by DuBois and Kivelson,11 in the somewhat 
different physical context of the Thomas-Fermi atom. 
In both cases, a not necessarily weak perturbation, 
inhomogeneous but slowly varying, is being applied to 
an otherwise homogeneous system, and relevant ob-
servables are being examined for their spatial depend­
ence, to some low order in the rapidity of their spatial 
variation. As in Refs. (10) and (11), then, we introduce 
sum and difference coordinates, and Fourier transform 
with respect to the difference coordinates. Thus, we 
define 

K„(p,R)^ jds(r-s)e~^'^-^K.(r,s), (6) 

with R = J ( r + s ) , and similarly for G, F\ and G. Then 

A*(r)3 7 r E » / V ( r , r ) , (2) 

10 G. A. Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961); 
G. A. Baraff, ibid. 123, 2087 (1961). 

11 D. F. DuBois and M. G. Kivelson, Phys. Rev. 127, 1182 
(1962). 
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Eqs. (4) transform to 

e[/TB(p,R)G.(p',R')]=l, 
e[ t f_„(-p, R)F„t(p',R')> 0CA*(R)5.(p',R')], 

where @ is the differential operator 

ri/ d d d d 

(7) 

0 s= Hm expl -( 
R'-R,P'-P L2\aR dp' dp dR o: (8) 

Combining Eqs. (5) and (6), we find 

ri d 
Kw(p}R) = iu— e(p,R)+ lim expl 

R',R"->R 

with the notation 

2 dp VdR' dR"/ J 

XA(R')SU(-p,R)A*(R"), (9) 

e(p,R)-e(p--A(R)N)—fp--A(R)) - „ . (10) 

We next expand (at least formally) each of the 
quantities in Eqs. (7) according to the degree of in-
homogeneity, e.g., 

K=KU»+KM+KW-\ , 

and equate terms of like degree in Eqs. (7) separately 
to zero. Thus, we obtain the set 

0(°>[i^°>G(o>]=l, 
e(o)[^(i)GCO)]+0(O)[^(O)G(D] 

+ 0<D[2J:<O>G<O>]=O, (11) 

etc., and a similar set for the F t ( n ) with appropriate 
right-hand sides. 

Before proceeding with the superconducting problem, 
it is convenient at this point to obtain an approximate 
expression for the normal state Green's function. Re­
placing K—>K, G—>G in Eqs. (11), and noting from 
definition (8) that 0 ( o ) = l, the first equation yields 

ew<o )(p,R)=[^< 0 )(p,R)]-1=[^-e(p,R)]-1 . (12) 

But since K^ = 0, and since ©(1)[Z,X"1] = 0 for any 
function X(p,R), the second of Eqs. (11) gives10,11 

<5(1> = 0. Hence, to an approximation sufficient for our 
purposes, (3=<5(0>, and we shall follow Gor'kov6 in using 
this expression throughout. 

Returning to the superconducting situation, Eqs. (11) 
can be solved for G^G (0)+G (1); 

G^»'(P>R) = CZu«')(p,R)]-1 

= {io>-6(p,R)+|A(R)|2 

XC-Ko-eC-^R)] - 1 }- 1 , (13) 

G<0«)(p,R) = -ii:M(1'(p,R)G.<«»(P,R)/^(0)(p,R) 

= -{[*„-e(p,R)] 

XC-»«-€(-p,R)]+|A(R)|«}-» 

if 3A(R) 3A*(R) "I 
x J A*(R)— A(R) 

2L dR dR J 

—|"p+-A(R)l . (14) 
wL c J 

The observable of most immediate interest obtainable 
from G is the current. In general, the average value of 
this operator is given by 

2e ri/ d d\ e n 
)(R) = - r E Hm - ( — ) — A(R) Gw(r,rO 

m n r ,->rL2\ar / dr/ c J 

JlTTj [ J . ( P _! A (R) )G W (P ,R) . (15) 
m n J (27r)3\ C J 

An approximate result for j is obtained by substituting 
expressions (13) and (14) into Eq. (15). Now although 
we have made a formal iteration in the degree of spatial 
variation, so that quantities with superscript (i) are 
homogeneous of order i in the gradient operator, so far 
these derivatives act on A and A*. We are, indeed, 
expecting [ A | to be slowly varying, but arg A need not 
be; any restrictions on arg A imply lack of full gauge 
invariance. Analogously, since H is no greater than a 
critical field, it may be considered as "weak"; but A 
need by no means be small, again due to the freedom 
of a gauge transformation. Nevertheless, quantities 
such as the current may be expanded in A as well as 
dA/dR provided the resulting terms are regrouped into 
an expansion in the gauge-invariant combination 

lie / d 2ie \ 
I A)A, 
VdR c I 

which may very well be small. When such an expansion 
and regrouping is carried out for j , keeping just the first 
nonvanishing contribution, and when, furthermore, the 
integration over angles of p indicated in Eq. (15) is 
performed, j becomes 

2er if 
j ( R ) = - - T ( A *(R> 

m 

3A(R) dA*(R) 

L 2\ dR 

2e 
—|A(R)i*A(R)~|rE 

c J « 

dR 

d3p 

A(R)) 

p2/3m 

(2TT)3 (a,2+£2(p,R))2 

where 
£ ( P , R ) = D 2 ( P ) + | A ( R ) | 2 ] 1 ' 2 . 

(16) 

(17) 

Equation (16) is similar to the corresponding expres­
sion for j found by Gor'kov, except for the factor ex­
plicitly containing the temperature. In fact, when 
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A«xr, 

TZ 
d3p p2/3m 

(2x)3 (c»2+£2)2 2 

N 
= - * * ( | A | » ) -

Â  7f(3) 

2 8 ( 7 T T ) 2 : 
(18) 

(where N is the number of particles per unit volume and 
f is the Riemann function), which is precisely the result6 

of Gor'kov. In general, however, 2|A|2g2 is closely 
related to the temperature-dependent London penetra­
tion depth as computed by BCS (A/Ay in their nota­
tion.) Carrying out the co summation, we have 

\A\^df(E) _ l - 2 / ( E ) \ 
2 | A | 2 g 2 = d 

f \&\ (c 

J-„ 6 E2 \ dE + IE 1 
= 1+ de 

df(E) 

dE 
(19) 

where / is the usual Fermi function. Expression (19) is 
identical to A/Ay, although in the present case, where 
A is a local function of position, k/kT becomes position 
dependent as well. 

The procedure just used to solve approximately for 
G can also be used to obtain F1". Here, however, it will 
be important to work through order j p t ^ one order 
higher than for G. Referring to Eqs. (6) and (10), it is 
seen that 

i C ( 0 ) ( - p , R)F„tco)(p,R) = A*(R)g„(p,R), 
or 
Fw t^) (p}R ) = = A*(R)[(ico-€(p,R)) 

X ( - i c o - 6 ( - p , R ) ) + ] A ( R ) | ^ ] - 1 . (20) 

The next two approximations to F1" may be generated 
straightforwardly but the resulting expressions are quite 
lengthy and will not be quoted here. What is of more 
interest is to use Ff to construct an equation deter­
mining A*(R). In the mixed representation, Eq. (2) 
reads 

A*(R)=VTX / FjfaR). (21) 
n J (2TT)3 

As was done for G, we also expand i ? t^ t (o )+ i? t ( i ) 
+ F t ( 2 ) in powers of A: to order A2 in F^°\ A in /7tu> 
and A0 in Ft(2). The angular integration indicated in 
Eq. (21) removes all terms linear in the vector p, and 
the integration over energies removes all terms linear in 
e(p), (i.e., terms odd under particle-hole interchange 
about the Fermi surface12). The remaining terms can be 
combined so that Eq. (19) finally becomes 

r d*p [ A* f/d lie \ 2 

A * = F T E / + (_+_A)A* 
» J (2TT)31 a>2+E2 LVdR c / 
/ / d lie \ \ 2 d A* d 2 |A | 2 d 

+A((—+—A)A*) ——+ 
WaR c / / d\A\2 

A * / d | A | 2 \ 2 d2 

3 dR2 

p2/6m: 
alAl 

(22) 

12 V. Ambegaokar and L 
914 (1961). 

a(|A|2)2J(co2+£2)2 

P. Kadanoff, Nuovo Cimento 22, 

Equation (22) reduces to familiar expressions in two 
different limits. In the absence of a magnetic field and 
in an otherwise homogeneous system, A* is independent 
of position; performing the sum over frequencies reduces 
Eq. (22) to the standard BCS result for A* as a function 
of temperature: 

dH tanh(|j8E) 
A * = F / A*. 

(2TT)* IE 
(23) 

Furthermore, for T near the transition temperature Tc> 
Eq. (22) may be expanded in powers of | A |2. Recalling 
that in the homogeneous situation Tc is determined by 
the condition 

1 = V 
d*p tanh(i&6) 

(2TT)3 2e 

to first order A* can be shown to satisfy 

(24) 

0 = In 
7f(3) 

|A(R)I' 

7f(3) p,>/d 'i-
Ac 

lie \ 2 1 
+—A(R)J A*(R). (25) 

S(TT)2 6m2\dR 

This is again precisely the result found by Gor'kov, 
agreeing with the GL theory. 

I t is also of interest to verify that the coupled dynami­
cal equations (16) and (22) can be obtained by requiring 
that a certain functional SF be stationary with respect to 
variations of A(R) and A(R). The functional for which 
Eqs. (16) and (22) are the corresponding Euler-Lagrange 
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FIG. 1. Contour lines of the function g i ( |A | , r ) defined by Eq. 
(29) in the dimensionless (A/TC)T/TC) plane. The curve gi = 0 
reproduces the temperature dependence of the zero-field energy 
gap in the BCS theory. The region gi<3Cl is that for which the 
gap function | A(r) | is a slowly varying function of position. 
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equations [the latter with Eq. (24) subtracted, to remove the divergence] is 

2TT)3U 

d*p f l l+cosh£E(p,R) 
•ln-

(2TT)3L/3 

+• 

l+cosh/3e(p) 

d lie 

2ml \dR 

tanh^ ce(p)-] 
1A(R)12 •••• 

2*(p) J 

\m\\c 
A(R)JA(R) 

'•N 
- I 2 ( | A p ) 
2 2m 

1 d|A(R)|* tfd*»(|A|») | H ( R ) - H . | * i 

where H a is the field applied externally. In fact, the 
stationary value of # can be shown to be just the (Gibbs) 
free-energy difference between the superconducting and 
normal states. A convenient proof uses, along with 
Eqs. (22) and (24), the well-known formula for the 
free-energy difference in terms of an integration of the 
potential energy over coupling constants, given for 
instance by Gor'kovV Eq. (19). Consistent with this 
interpretation, & vanishes when A=0 , and it reduces to 
the BCS expression for the free-energy difference 
when Ha=0. 

III. DISCUSSION 

The dynamical equations (16) and (22) coupling A(R) 
and A(R), or, equivalently, the free-energy functional 
(26) from which the requirement of stationarity recovers 
them, constitute our principal results. We have seen 
that these equations resemble in form the phenomeno-
logical Ginzburg-Landau theory, but contain A(R)-
dependent coefficients, which further complicate the 
dynamics. Because of this, no precise identification with 
the GL order parameter $ can be made; the gap function 
A might still be interpreted to a certain extent as an 
order parameter, but it cannot be normalized in the 
same way as \f/7 and is not related to the superfluid 
density in as simple a manner. 

The equations also are similar to the standard BCS 
theory, to which, as we have seen, they reduce when the 
gap function becomes independent of R. In this sense, 
they constitute a natural generalization of the BCS 
energy gap and London electrodynamic equations, to 
situations that are spatially inhomogeneous on a macro­
scopic scale. Our results are manifestly gauge invariant, 
and it here becomes clear that the generalization 
A—»A(R) is all that is needed in the BCS context to 
obtain this in variance.12 

I t may now be asked, to what extent are the assump­
tions used in deriving Eqs. (16) and (22) valid? That is, 
under what circumstances are the solutions A and A 
indeed slowly varying compared with a coherence 
distance? To develop some feeling for this problem, we 
may temporarily skeletonize it by taking A to be real, 
and ignoring the R dependence of g2. Then subtracting 
Eq. (24) from (22), and substituting Eq. (16) into the 
appropriate Maxwell equation, the equations we wish to 
examine can be written as 

V 2 A - ( 2 | A | V ^ 2 ) A , (27) 

0 
f pF

2 / d lie X 
= \gi+ M — + — A ) 

l 6m2 \dR c / 
A. (28) 

aR 12 dR 8T (26) 

Here S L = (4xAre2/mc2)~~1/2 is the London penetration 
depth, and 

~tanh|/3£ tanhj/3ce"| 

J ' (29) £ i ( | A | 2 ) - del 
L IE 2e 

From the definitions (18) and (29), it is seen that 
g2=~dg}/d\A\\ 

Equation (28) now reveals that the coherence dis­
tance £, the characteristic distance of nonlocality for 
A(R), is just given by 

£2-£o2(Y7rrc)
2g2, (30) 

with £0==vF/y7r2Tc being the BCS coherence distance 
(7 is Euler's constant). On the other hand, A(R) varies 
in space over characteristic lengths 

X^£gi -1/2 (31) 

Thus, it is legitimate to regard A(R) as a local, slowly 
varying function only when gi<8Cl, so that A^£.From 
another point of view, Eq. (28) represents the first two 
terms in an expansion which may be indicated sche­
matically as 

0=\gi+¥-
dR2 -£4-

dR± 
A; 

the third and higher terms may be neglected and A 
varies as cosi?/X, only if Â >>£. 

Furthermore, the penetration depth 8 of the magnetic 
field is given from Eq. (27) as 

8=dL(2\A\2g2)-112. (32) 

Thus, the field is slowly varying compared to a coherence 
distance if £<K8, or 

yirTc\A\gi«8L/H0. (33) 

The inequality not only depends on the values of T and 
|A| , but also on the ratio of the London penetration 
depth to the BCS coherence distance. This ratio 
typically is small for pure soft superconductors (so that 
the electrodynamics can be local only for T~TC)7 but 
may be of order unity or more for some pure transition 
metals such as niobium,13 and for alloys (a situation not 
explicitly treated here) is expected to be much larger 
than one. In the latter cases, a local electrodynamics of 
the London type, Eq. (27), is appropriate even at com­
paratively low reduced temperatures. 

13 T. F. Stromberg and C. A. Swenson, Phys. Rev. Letters 9, 
370 (1962); S. H. Goedmoed, A. Van der Giessen, D. de Klerk, 
and C. J. Gorter, Phys. Letters 3, 250 (1963). 
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FIG. 2. Contour lines of the function 2 r c |A |g 2 ( |A | , r ) , with 
g2 denned by Eq. (19), in the (A/TC,T/TC) plane. The dashed 
curve is the gi = 0 curve from Fig. 1. The region 2TC\ A|g2<3C5z,/£o, 
depending on the ratio of London penetration depth to BCS 
coherence distance, is that for which the magnetic field is a 
slowly varying function of position and satisfies a local differen­
tial equation of the London form. 

The results of the preceding paragraphs may be sum­
marized graphically, illustrating the regions of validity 
of a local superconductivity. In Figs. 1 and 2 we plot 
contours of constant gi and 271

c|A|g2, respectively, as 
functions of the reduced variables \A\/TC and T/Tc. 
The curve g i = 0 of Fig. 1 simply reproduces the tem­
perature dependence of the energy gap, ABCS(JT), in the 
BCS theory [note definition (29)], while the region of 
gi<<Cl gives the values of (A,T) for which A is slowly 
varying and obeys the local Eq. (22). For T<TC, 
Eq. (22) is seen to hold for all 0 < | A| <A B cs ; whereas 
for T<^TCj the equation is adequate only for | A | < ABcs, 
and so can describe the magnetic transition only if it is 
of first order, with | A| not greatly affected by the field. 
Similarly, Fig. 2 displays the region of validity of the 
local current expression (16), depending through Eq. 
(33) on the ratio of intrinsic parameters, 5z,/£o. Illus­
trated are the standard results that for the usual soft 
superconductors with 5L<<C£O, a London electrodynamics 
is valid at all A only when Tc— T<KTC; but in the much 
less common situation 5L^>^O, Eq. (16) is valid for 
almost all T and A. 

At this point, however, it is worth noting that the 
above analysis, being devoted primarily to the relative 
size of the space derivatives [assumptions (2) and (3)], 
is only relevant for bulk specimens. In films thinner 
than the characteristic lengths £ and 8, spatial variations 
are negligible and the real issue is assumption (4) on the 
relative strength of the field. The equations derived 
here reduce for the thin film case very nearly to those 

proposed by Bardeen.14 The question of validity in this 
situation becomes lengthy and is postponed to a later 
paper. 

One further result of some interest follows directly 
from the form of Eq. (16) for the current, without 
further computation. I t has been shown by Bardeen,15 

Keller and Zumino,16 and Ginzburg,17 from the high 
temperature, small gap limit of Eq. (16) found pre­
viously by Gor'kov, that fluxoid quantization is an 
exact consequence of the microscopic theory; because of 
the presence of the "effective charge" e*= 2e, the natural 
quantum unit of flux is ^o = hc/2e, the value found 
experimentally,18 and half the value originally predicted 
by London. Our establishment of Eq. (16) valid at all 
temperatures for which %<£d makes fluxoid quantization 
in units of <£0 an exact theoretical prediction for all 
superconductors in the London limit. 

Finally, a number of generalizations of the calculation 
presented here are possible, and will also be the subject 
of a separate paper. I t is entirely feasible to include: 
(1) Time-varying magnetic, and also electric fields. This 
would be of interest, e.g., for a computation (completely 
gauge invariant) of the magnetic field dependence of the 
microwave surface impedance of superconductors.19 

(2) The interaction of the magnetic field with the elec­
tron spins as well as their orbital motion. This would 
allow a systematic analysis of the role of the Zeeman 
energy in determining the critical field, especially in 
the high Hc superconducting alloys, as first discussed 
by Clogston.20 Another generalization of practical 
interest is the inclusion of impurity scattering centers, 
so as to obtain the effect (e.g., on the penetration depth) 
of a finite electronic mean free path. Results in the 
"high-temperature" regime have already been obtained 
by Abrikosov and Gor'kov.21 
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